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Abstract
Thermodynamic fluctuation among many electronic states in systems with ‘itinerant-electron’
magnetism is addressed with a first-principles formulation of the Helmholtz energy. The Ce
γ –α phase transition is used as an illustrative case. The kB ln(2J + 1) form for the magnetic
entropy that is commonly found in the literature is replaced with an expression that is derived
from configurational fluctuations among nonmagnetic, ferromagnetic, and antiferromagnetic
electronic states. Predicted first- and second-order magnetic phase transitions are in close
accord with experiment. The mixture of states leads to a Schottky anomaly in the Ce specific
heat.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the discovery of the electron spin, the role of
spin freedom has been the focus of the theory of
magnetism. Of particular interest is ‘itinerant-electron’
magnetism [1, 2] which leads to intriguing properties
such as the well-documented ferromagnetic–paramagnetic
transition. Some superconducting compounds exhibit
‘itinerant-electron’ magnetism. Examples are the cuprates [3],
the newly-discovered iron pnictides [4], and heavy-fermion
compounds [5], which exhibit the antiferromagnetism →
spin glass → superconductor phase transition sequence and
specific heat anomalies. ‘Itinerant-electron’ magnetism is
also operative in multiferroics [6] and lithium transition
metal phosphates for rechargeable batteries [7] for which
ferroelectric, ferro/antiferromagnetic, and ferroelastic phases
coexist.

We recently developed a thermodynamic framework for
f-electron systems with ‘local-moment’ mechanism [8]. We
applied our framework to the Ce γ –α isostructural phase
transition (as a representative case) assuming only two
Ce states, i.e. low-volume, nonmagnetic and high-volume
ferromagnetic. While our predictions of the critical point and
equation of state were reasonable, our model overestimated
the entropy change of the transition along the phase boundary.
We believe that this disparity is due to the adopted ‘local-
moment’ mechanism. This can be demonstrated through

analysis of the total entropy change �S = �Sf + �Slat +
�Sel along the T –P phase boundary where �Sf, �Slat, �Sel

are the magnetic contribution, the lattice contribution, and
electronic contributions due to thermal electronic excitation
within the same magnetic configuration, respectively. Using
the Clapeyron equation, �S = �V dP/dT , Allen and Liu [9]
estimated �S ∼ 1.54kB (kB is the Boltzmann constant) which
falls within the 1.4–1.6kB range from experiments [10, 11].
Jeong et al [12] measured 0.75 ± 0.15kB for �Slat. �Sel

is small and can be neglected. Taking away the lattice
contribution, the experimental �Sf then falls in the 0.5–1.0kB

range, suggesting ‘itinerant-electron’ magnetism in the Ce γ –
α transition. Theoretically, ‘local-moment’ magnetism results
(at a sufficiently high temperature) in �Sf = kB ln(2J + 1)

(Ce can be viewed as having just one electron that contributes
to the magnetic entropy per atom) where J = L ± X is the
local total angular momentum (L = 3 is the orbital momentum
of an f-electron and X = 1/2 is the electron spin angular
momentum). Numerically, Johansson et al [13] (following the
Mott transition (MT) model), Allen and Liu [9] (following the
Kondo volume collapse (KVC) model), and Lipp et al [14]
(following the KVC model) employed J = 2.5, leading to
�Sf = 1.79kB (kB ln 6). Lüders et al [15] employed J = 3.5,
leading to �Sf = 2.08kB (kB ln 8). These values are all
well outside of the 0.5–1.0kB experimental range estimated
above. If one assumes ‘itinerant-electron’ magnetism by which
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an f-electron is limited to having only spin up, spin down,
and spin zero (nonmagnetic) states (at a sufficiently high
temperature), then �Sf = 1.10kB (kB ln 3). Alternatively,
�Sf = 0.69kB (kB ln 2) if an f-electron is limited to having
only spin up and spin down states.

In the present paper, we reformulate our previous ‘local-
moment’ mechanism framework [8] in terms of ‘itinerant-
electron’ magnetism. Our new framework, which is based
upon a fundamental partition function, is detailed in section 2
along with the associated Helmholtz free energy, thermal
population, magnetic entropy, and magnetic specific heat.
In section 3, we discuss the physics associated with the
thermodynamic formulation in section 2. Section 4 is the
computational detail for an investigation of the well-known
Ce γ –α isostructural phase transition which is used as a
prototype system to demonstrate our new framework. A
discussion of our results in terms of the 0 K energetics, the
temperature evolution of the double wells (tangents) along the
free energy isotherm, the thermal population, the specific heat
anomaly, and comparison with the Kondo–Anderson model are
provided in section 5. The main developments in the paper are
summarized in section 6.

2. Thermodynamic framework

We consider a magnetic lattice with N atoms where volume
V and temperature T are constant. For such a system, the
partition function, Z , is written as [16]:

Z =
∑

σ

wσ
∑

i∈σ,ρ∈σ

exp[−βεi(N, V , ρ)]. (1)

Here, σ identifies the electronic states, each distinguished by
different spin orientation distributions in the lattice sites at
which the local spin can be up, down, and zero (zero means
a locally nonmagnetic site in the present theory). In addition,
β = 1/kBT , wσ is the multiplicity of electronic state σ , i
represents the vibrational states belonging to the electronic
state σ , ρ labels the electronic distributions associated with
electronic state σ , and εi(N, V , ρ) is the energy eigenvalue of
the corresponding microscopic Hamiltonian. Summation over
all states belonging to a specific electronic state σ gives

∑

i∈σ,ρ∈σ

exp[−βεi(N, V , ρ)] = Zσ = exp[−β Fσ (N, V , T )].
(2)

It is immediately apparent that Fσ (N, V , T ) is the Helmholtz
free energy of electronic state σ , and the thermal population of
electronic state σ is thus:

xσ = wσ Zσ /Z . (3)

We emphasize here that the multiplicity wσ in equations (1)
and (3) means that the system has a total of wσ electronic
states that are equivalent to electronic state σ by space and
spin symmetry. Furthermore, with F = −kBT ln Z [16], we
find the Helmholtz free energy for a system with N atoms to
be

F(N, V , T ) =
∑

σ

xσ Fσ (N, V , T )−T Sf(N, V , T ), (4)

where an important ancillary result is the magnetic entropy

Sf(N, V , T ) = −kB

∑

σ

xσ ln(xσ /wσ ). (5)

We then find the total entropy is

S(N, V , T ) = Sf(N, V , T ) +
∑

σ

xσ Sσ (N, V , T ), (6)

where Sσ = −(∂ Fσ /∂T )V is the entropy of electronic state σ .
Furthermore, we deduce the specific heat at constant volume
from CV = (∂(F + T S)/∂T )V and the result is

CV (N, V , T ) = Cf(N, V , T ) +
∑

σ

xσ Cσ
V (N, V , T ). (7)

Note that Cσ
V in equation (7) is the specific heat of electronic

state σ . The magnetic specific heat due to the configurational
coupling or spin fluctuation is thus

Cf(N, V , T ) = 1

kBT 2

{∑

σ

xσ [Eσ (N, V , T )]2

−
[∑

σ

xσ Eσ (N, V , T )
]2

}
, (8)

with the internal energy given by Eσ = Fσ + T Sσ and the
entropy of electronic state σ given by Sσ = −(∂ Fσ /∂T )V .

3. Physics

3.1. Ergodicity

The thermodynamic framework detailed in section 2 satisfies
the condition of ergodicity in statistical physics [16].
Therefore, equation (3) links the total Helmholtz free energy
of the system and the Helmholtz free energy of an individual
electronic state. The thermodynamics is complete as described
by equations (3)–(8). Moreover, if there are s magnetic
electronic states at each lattice site, the summation over σ

in equations (1) and (4) will contain sN terms. Note that
the summation over σ is in addition to the summation over
the local lattice vibrations and the local thermal electronic
excitation which have been accounted in Fσ (N, V , T )—the
Helmholtz free energy of electronic state σ .

3.2. Driving force for the magnetic phase transition

We note that it is the multiplicity, wσ , that controls the
magnitude of xσ in equation (3) and therefore the magnetic
phase transition. This can easily be understood through the
following observations. If wσ is merged into the exponential
part in equation (1), then an extra entropy contribution
of kBT ln wσ is added to the free energy Fσ (N, V , T )

(equation (4)) of the individual electronic state σ . As a result
of the differences in wσ , the energy barrier due to the 0 K
energy difference between different electronic states can be
overcome by this entropy with increasing temperature. This
renders the free energies of some of the 0 K metastable
electronic states lower than that of the original 0 K ground
state, resulting in the magnetic phase transition. We believe
that this is the underlying physics associated with the Ce γ –α
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transition (nonmagnetic-paramagnetic), the well-documented
ferromagnetic–paramagnetic transition [17], and the spin-
density-wave to paramagnetic transition in the new iron-based
superconductor family (discovered following the seminal work
of Kamihara et al [4]).

3.3. Schottky anomaly

Equation (8) is a generalization of the Schottky specific heat
anomaly for a two-state system [17]. As we shall demonstrate,
this implies that the specific heat has a peak value at a specific
temperature at the point of the magnetic phase transition.

4. Computational details

To illustrate our theory, we again investigate thermodynamics
of the Ce γ –α transition [14] which continues to be the subject
of extensive study. In fact, debates persist regarding the
suitability of the Mott transition (MT) model [13, 15, 18] and
the Kondo volume collapse (KVC) model [9, 19, 20].

We treat Ce as a system having N = 2 magnetic lattice
sites at each of which the atom can be both magnetic (with
spin either up or down) and nonmagnetic (for simplicity, we
will use ‘spin zero’ to label the nonmagnetic state); this makes
up 3N = 9 spin distributions (electronic states). However,
calculations demonstrate that the mixed space combination
of spin zero and spin up (down) is not numerically stable.
Convergence to either nonmagnetic or ferromagnetic states
always occurs. Combinations of spin zero and spin up (down)
have an associated multiplicity of 4, i.e., 01, 01̄, 10, and
1̄0, where 0, 1, and 1̄ represent spin zero, up, and down,
respectively. We assume that these combinations are each
high in energy and hence can be neglected. The remaining
electronic states are nonmagnetic (00), antiferromagnetic
(11̄ = 1̄1, body-centered tetragonal [21] with c/a = 1.4142)
and ferromagnetic (11 = 1̄1̄) with multiplicities of 1, 2,
and 2, respectively. We note that the present theory
can readily address a larger (e.g. N > 2) system and
expect some improvement in the major results (e.g. �Sf)
relative to experimental measurements through inclusion of
additional states. However, inclusion of additional states is
unwarranted here since our focus on only the nonmagnetic,
antiferromagnetic, and ferromagnetic states is sufficient for
demonstrating that the theory accurately addresses itinerant-
electron magnetism. This can be understood by the fact that
for arbitrary N , the number of states of the system is 3N

which gives rise to, at high enough temperature, an entropy
of NkB ln 3 for the N site system, i.e., kB ln 3 per site-N-
independent at high enough temperature.

We calculate Fσ (N, V , T ) using [16]

Fσ (N, V , T ) = Eσ
c (N, V ) + Fσ

lat(N, V , T ) + Fσ
el (N, V , T ).

(9)
Note that Eσ

c is the 0 K static total energy, Fσ
lat is the lattice

vibrational free energy, and Fσ
el is the thermal electronic free

energy.
The 0 K static total energy in equation (9) is calculated

with the Dudarev DFT + U method [22] in VASP [23] with
spin polarization as in the previous work [8].

The direct method to lattice dynamics can be used (see
our previous model [8]) to estimate the free energy due to
lattice vibrations in the present thermodynamic formulation.
However, extensive phonon calculations revealed imaginary
modes in the magnetic structures with lower atomic volumes
(<32 Å

3
). Previously [8], we employed extrapolation to

get the lattice contributions to the free energy. However, in
this work, we find that similar extrapolation results in non-
negligible uncertainty for the antiferromagnetic state since its
energy is too close to the nonmagnetic state (the extrapolation
for the ferromagnetic state works well due to its relatively large
energy difference with the nonmagnetic state). We therefore
adopt the Debye–Grüneisen approach [24, 25] which requires
only the total energy with volume as input. The Debye–
Grüneisen approach does not change the main physics of the
present work. In fact, it has been frequently employed in the
literature [14] to compute free energies due to lattice vibrations
without appeal to lattice dynamic calculations. Furthermore,
the Debye–Grüneisen approach is a suitable alternative to
more computationally demanding phonon calculations or in
situations where phonon calculations reveal imaginary modes
or the system size precludes first-principles calculations
altogether. We calculated the Debye temperature using θσ

D =
154.79[(V/N)1/3 Bσ (V )/M]1/2 [24, 25] where Bσ is the 0 K
single crystal bulk modulus (GPa) and M is the average atomic
mass (amu), and V is the average atomic volume (Å

3
). Here,

the prefactor of 154.79 differs from that of Moruzzi et al [24]
by a factor of 1.086. The thermal averages of our calculated
Debye temperatures are 145 K for α-Ce and 104 K for γ -Ce.
These are in reasonably close accord with the experimentally
estimated values of 134 K for α-Ce and 104 K for γ -Ce
from Jeong et al [12]. For Debye temperature values versus
pressure, the ultrasonic measurements of Voronov et al [26]
gave ∼148 K for the alpha phase and 136 K for the gamma
phase at the transition.

The remaining term in equation (9), Fσ
el , was determined

via integration over the electronic DOS following the Fermi–
Dirac distribution [8, 21, 27].

5. Results and discussion

5.1. Evolution of double wells along the free energy isotherm

Figure 1(a) shows our computed 0 K static total energies with
atomic volume for the nonmagnetic (NM), antiferromagnetic
(AFM), and ferromagnetic (FM) Ce states. The equilibrium
volume energies reveal that the NM state is the lowest of
the three states. However, the AFM state is intermediate
in energy to the NM and FM states since the energy at its
equilibrium volume is just above that of the NM state but
substantially lower than that of the FM state. Figure 1(b)
shows our computed free energy isotherms. The γ –α phase
transition in Ce is noted by the double tangents which merge
at our predicted critical point values of Tc = 546 K and
Pc = 2.05 GPa. This is in close accord with the experimental
values of 600 K and 2.0 GPa reviewed by Koskenmaki and
Gschneidner [28]. In comparison, the critical points measured
from other experiments are: 1.5 GPa and 480 K [14]; 1.8 GPa
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Figure 1. (a) dot–dashed line with ◦ (red), dashed line (blue), and
solid line with • (blue) represent the 0 K static total energies for
nonmagnetic, antiferromagnetic, and ferromagnetic electronic states
of Ce, respectively. (b) The solid lines denote F(N, V, T ) (per atom)
from 0 to 600 K at �T = 100 K; the heavy dot–dashed (α-Ce, red)
and solid (γ -Ce, blue) looping curves enclose the two-phase region
with the light red dot–dashed lines connecting the common tangents
of each isotherm; the black dashed line denotes the zero pressure
equilibrium state at given T ; ◦ (red) and • (blue) emphasize the
phase boundary at 300 K while (green) is the critical point.

and 485 K [11]; 1.45 GPa and 480 K [29]; 1.75 GPa and
550 K [30].

5.2. T–V and T–P phase diagrams

Based on the free energy dependency of T and V , we have also
calculated the Ce phase diagram in the T –V and T –P planes.
Comparisons with experimental data [10–12, 14, 28–33] are
shown in figures 2(a) and (b), respectively. Two results from
Lipp et al [14] based upon the KVC model fitting are also
plotted in figure 2(b) for comparison. Our theory predicts
that the critical point for the Ce γ –α transition is actually a
tri-critical point below which is a two-phase region (yellow
shadow in figure 2(a) of the T –V phase diagram) composed
of nonmagnetic, antiferromagnetic, and ferromagnetic states,
and above which the transition is second or higher order. The
magnetic entropy Sf due to configurational coupling plays a
crucial role in our prediction of the tri-critical point. Without
Sf, the transition is always first order over 0–800 K. Figure 2(a)
also shows a tentative phase boundary which is determined by
finding the volume point that gives a 50% thermal population
of the nonmagnetic state.

Figure 2. (a) VN denotes the atomic volume at 300 K and 0 GPa.
The dot–dashed (red) and solid (blue) looping branches denote α-Ce
and γ -Ce, respectively. (green) represents the predicted critical
point (Tc) from the present work; the dashed (green) line denotes a
tentative phase boundary above Tc; the experimental data are due to
Schiwek et al [11] (red � and blue �); [12] (red ◦ and blue ◦); [33]
(red �� and blue ��); [32] (red ♦ and blue ♦); [10] (red 	 and blue
	); [11] (green �); and [28] (green •). (b) The solid (black,
overlapped with the red dashed line at low P) line represents the
phase boundary predicted in the present work. The experimental
phase boundary is due to Jayaraman [30] (black ♦); Schiwek et al
[11] (black 	); Poniatovskii [31] (black �); [14] (black ); [10]
(black ◦); and [29] (black ��). Big green � represents the recently
measured critical point by Lipp et al [14]. The red dashed (with the
+ sign) and blue dot–dashed (with the × sign) lines represent two
KVC model fittings by Lipp et al [14].

5.3. Entropy changes along the phase boundary

Next, we discuss the entropy change associated with the Ce γ –
α phase transition in terms of magnetism and lattice vibration.
Figure 3(a) shows predicted components of the total entropy
change. At 300 K we predict �S = 1.40kB/atom (with
�Slat = 0.94kB/atom). Our theory, therefore, in the form of
itinerant magnetism, agrees well with available experimental
data. Figure 3(b) shows the individual contribution to the
free energy change along the phase boundary in terms of
T�S, �E , and P�V . Close agreement is noted for each
thermodynamic term between the present theory and the
experiments [10, 11].

5.4. Temperature evolution of the thermal population

Near the critical point, our theory predicts that the system is a
mixture of the various electronic states. Figure 4(a) depicts
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Figure 3. (a) The calculated entropy changes in terms of lattice
vibration only (black dashed line), lattice vibration plus thermal
electron (black dot–dashed line), and lattice vibration plus thermal
electron and plus configuration coupling (solid blue). Black �� (with
error bars) from Jeong et al [12] is their estimated vibrational entropy
change at 0.7 GPa of γ -Ce relative to α-Ce. Other open (solid)
symbols are from the measurements of Schiwek et al [11]
[10].(b) The measured data by Schiwek et al [11] and Beecroft and
Swenson [10] plotted in the form of T �S (blue diamonds), �E
(green circles), and P�V (red squares) along the γ –α phase
boundary. The curves are from the present calculations.

calculated thermal populations (xσ s) of the nonmagnetic,
antiferromagnetic, and ferromagnetic electronic states at the
2.05 GPa critical pressure. For T < 300 K, the system consists
mainly of the nonmagnetic Ce state which results in α-Ce. For
T > 300 K, the thermal populations of the magnetic states
increase with increasing temperature. Finally, for T > 546 K
(the critical point), 70% of the system is composed of the
antiferromagnetic Ce state with the remaining 30% consisting
of the nonmagnetic and ferromagnetic Ce states. This is in
agreement with the experimental observations [28, 34, 35] that
γ -Ce is magnetic with a partially disordered local-moment
(paramagnetic) and that α-Ce is nonmagnetic.

5.5. Schottky anomaly

The mixture of Ce states further results in the specific
heat anomaly [36, 37] which is a characteristic of critical
phenomena in many materials. For superconductors, the
specific heat anomaly is usually explained in terms of the
pseudogap or electron–phonon interaction [38, 39].

Figure 4(b) shows our predicted temperature evolution
of Cf/T , Cel/T (Cel is the electronic specific heat), and

Figure 4. (a) Thermal populations of the nonmagnetic (red
dot–dashed), antiferromagnetic (green dashed), and ferromagnetic
(blue solid) as a function of temperature at the critical pressure of
2.05 GPa. (b) Cel/T , (black dashed line), Cf/T (black dot–dashed
line), and their sum (Cf + Cel)/T (blue solid line) at 2.05 GPa.

their sum, at our predicted 2.05 GPa critical pressure. Our
theory suggests the following: (a) below ∼500 K, (Cf +
Cel)/T shows an exponential temperature dependence due
to the thermodynamic fluctuation among the nonmagnetic,
ferromagnetic, and antiferromagnetic states; (b) a peak appears
at ∼500 K in the (Cf + Cel)/T curve, which typically
suggests the Schottky anomaly; (c) the electronic specific heat
coefficient (Cel/T ) is linear against T ; (d) above ∼500 K the
sum of Cf/T and Cel/T renders (Cf + Cel)/T temperature-
independent. For the total specific heat, our calculated specific
heat at 300 K and 2.05 GPa is ∼28 J/mole atom compared with
the measured value of ∼31 J/mole atom at 300 K and 2.0 GPa
by Bastidet et al [36]. We note that at 360 K and 2.05 GPa, our
calculated specific heat is ∼31 J/mole atom.

5.6. Comparison with the Kondo–Anderson model

We use figure 5 to summarize the underlying physics
of the ‘itinerant-electron’ magnetism model. The present
model closely resembles the magnetic impurity model of
Anderson [9] associated with the Kondo effect [1, 40–42] for
a lattice of magnetic impurities. The physical essence of the
Kondo effect is the role of spin of the magnetic impurity as
a function of temperature. Kouwenhoven and Glazman [41]
presented a cogent summary of the physics of the Anderson
model. The electrons from the magnetic impurity, which have
a spin of 1/2 and z-component fixed as either ‘spin up’ or ‘spin
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Figure 5. Comparison with the Kondo–Anderson model. (a) 0 K
static energy; (b) 300 K free energy.

down’, coexist with the mobile electrons (a Fermi sea) in the
host metal. According to Kouwenhoven and Glazman [41] ‘· · ·
all the states with energies below the so-called Fermi level are
occupied, while the higher-energy states are empty. However,
so-called exchange processes can take place that effectively
flip the spin of the impurity from spin up to spin down, or
vice versa, while simultaneously creating a spin excitation in
the Fermi sea’. In other words [1, 40], at low temperature,
the impurity magnetic moment and one conduction electron
moment bind very strongly to form an overall nonmagnetic
state where, at high temperatures, the binding is broken
resulting in a magnetic entropy of approximately kB ln 2.

As illustrated in figure 5, our itinerant-magnetism model
for the Ce transition assumes that there are two groups of
electronic states, namely, the nonmagnetic group (just one
state) and the magnetic group formed by the ferromagnetic and
antiferromagnetic states. At 0 K equilibrium, the nonmagnetic
is the occupied ground state and the magnetic states are empty.
At increasing temperature, being slightly different from the
Anderson model, our model has the magnetic entropy term
in equation (5). Taking the simplest case where the system
is limited to magnetic states, at high enough temperature
the mixture between the ferromagnetic and antiferromagnetic
states results in a magnetic entropy of ∼kB ln 2. It is the
entropy that controls the Ce γ –α phase transition. We find that
the lattice contribution and magnetic contribution to Ce γ –α

phase transition are of the same magnitude.

6. Conclusions

In summary, we have developed a first-principles thermody-
namic framework for materials that exhibit ‘itinerant-electron’
magnetism. Using Ce as an illustrative example, we have quan-
titatively addressed the mixing of nonmagnetic, antiferromag-
netic, and ferromagnetic 4f-states at finite temperatures. The
present theoretical formulation is applicable to a whole host of
technologically relevant materials.
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